5,016 research outputs found

    Hierarchical Feature Learning

    Get PDF
    The success of many tasks depends on good feature representation which is often domain-specific and hand-crafted requiring substantial human effort. Such feature representation is not general, i.e. unsuitable for even the same task across multiple domains, let alone different tasks.To address these issues, a multilayered convergent neural architecture is presented for learning from repeating spatially and temporally coincident patterns in data at multiple levels of abstraction. The bottom-up weights in each layer are learned to encode a hierarchy of overcomplete and sparse feature dictionaries from space- and time-varying sensory data. Two algorithms are investigated: recursive layer-by-layer spherical clustering and sparse coding to learn feature hierarchies. The model scales to full-sized high-dimensional input data and to an arbitrary number of layers thereby having the capability to capture features at any level of abstraction. The model learns features that correspond to objects in higher layers and object-parts in lower layers.Learning features invariant to arbitrary transformations in the data is a requirement for any effective and efficient representation system, biological or artificial. Each layer in the proposed network is composed of simple and complex sublayers motivated by the layered organization of the primary visual cortex. When exposed to natural videos, the model develops simple and complex cell-like receptive field properties. The model can predict by learning lateral connections among the simple sublayer neurons. A topographic map to their spatial features emerges by minimizing the wiring length simultaneously with feature learning.The model is general-purpose, unsupervised and online. Operations in each layer of the model can be implemented in parallelized hardware, making it very efficient for real world applications

    Hierarchical Data Representation Model - Multi-layer NMF

    Full text link
    In this paper, we propose a data representation model that demonstrates hierarchical feature learning using nsNMF. We extend unit algorithm into several layers. Experiments with document and image data successfully discovered feature hierarchies. We also prove that proposed method results in much better classification and reconstruction performance, especially for small number of features. feature hierarchies

    Transfer learning in hierarchical feature spaces

    Full text link
    © 2015 IEEE. Transfer learning provides an approach to solve target tasks more quickly and effectively by using previously acquired knowledge learned from source tasks. As one category of transfer learning approaches, feature-based transfer learning approaches aim to find a latent feature space shared between source and target domains. The issue is that the sole feature space can't exploit the relationship of source domain and target domain fully. To deal with this issue, this paper proposes a transfer learning method that uses deep learning to extract hierarchical feature spaces, so knowledge of source domain can be exploited and transferred in multiple feature spaces with different levels of abstraction. In the experiment, the effectiveness of transfer learning in multiple feature spaces is compared and this can help us find the optimal feature space for transfer learning
    • …
    corecore